Lowest Possible Power diagram
I developed the Lowest Possible Power diagram, to compare spots, that are made with different power. The Lowest Possible Power diagram shows instantly, how good the propagation is.
A spot is placed on the diagonal line of the power, that is used by the transmitting station. The height of the spot in the diagram is determined by the SNR of that spot. You can read the Lowest Possible Power of a spot, on the horizontal axis.
The better the propagation, the lower the value of the Lowest Possible Power.
Spots by EU2AAH
This diagram shows all stations, that were spotted by EU2AAH in the time slot of 13:52 UTC. It can be seen instantly that 3 station were received with good propagation and 2 with very good propagation. The letter gives the DXCC of the spot.
Paul's signal (PA0K) was the strongest signal, with a SNR of -3 dB. The arrow to the horizontal axis points to a Lowest Possible Power of 5 milliwatt. The LPP of 5 mW is in the area of very good propagation.
The propagation between F6KOP (F in the diagram) and EU2AAH is even better, with a LPP (lowest possible power) of 2 mW.
Lowest Possible Power diagram of spots received by EU2AAH |
The dashed line in the LPP diagram is the diagonal line for a power of 10 milliwatt. PA0K and F6KOP could also be spotted if they would use a power of 10 milliwatt. If PA0K would reduce from 2 Watt to 10 milliwatt, his signal would be received with a SNR of -26 dB. F6KOP would be received with a SNR of -22 dB with a power of 10 milliwatt.
Table of spots received by EU2AAH |
Geen opmerkingen:
Een reactie posten